麻省理工学院量子、光学、通讯科研项目

理工 2018-06-29 16:54:23

 理工·量、光学、科研项目

 

 33.jpg

 

一、学校简介

麻省理工学院(Massachusetts Institute of Technology, MIT),创立于 1861 年,坐落于美国马萨诸塞州剑桥市(大波士顿地区),是世界著名私立研究型大学。作为世界顶尖高校,麻省理工学院(MIT)尤其以自然及工程学享誉世界,位列 2015-16 年世界大学学术排名(ARWU)工程学世界第 1、计算机科学第 2,与斯坦福大学、加州大学伯克利分校一同被称为工程科技界的学术领袖。截止 2016 年,麻省理工共走出了19 位图灵奖(计算机界最高奖)得主;先后有 87 位诺贝尔奖得主在麻省理工学院工作或学习过。

 

二、项目简介

科研主题: 麻省理工学院·量子物理、光学物理、通讯物理(Physical Optics)

科研导师:MIT 物理专业导师;

科研地点:MIT 物理教室及科研组实验室;

科研时间:寒假,暑假,每期时间长度为 4 周;具体情况根据学生面试情况由美方进行调整;

 

报名后 1 周安排面试,面试前辅导学生阅读 1 篇专业论文,招募 3-5 人;

 

三、招募要求

面向对象:预申请美国名校物理相关专业的大学生以及优秀的高中生。

专业背景:数学、物理等相关专业;

 

四、科研内容

Two Dimensional Materials for Electronic Applications Massachusetts Institute of Technology

Keywords: Device physics, nanomaterials, electronics, graphene Recommendation: This program is designed for students interested in physics and fundamentalelectronic components used in our electronic gadgets such as cell phones or computers.

Abstract:Silicon-based  integrated  circuits  are  the  major  driving  force  behind  the multi-billion dollar electronicsindustry. In the past 60 years, miniaturization of silicon devices and introduction of performance boosters such as strain, high- κ gate dielectrics and metal gates have been successful approaches insatisfying the insatiable demand for higher performance and lower power consumption in electronic systems. Nevertheless, the performance and scaling of conventional silicon devices are moving towards  their  scientific  and  technological  limits,  especially  for  sub-5  nm  field effect transistor, thereby driving the electronics industry's quest for new materials. The current International Technology Roadmap for Semiconductors, which assesses the technology requisites for  the next-generation semiconductor devices, has prominently featured two-dimensional (2D) materials (e.g. graphene  and  MoS2)  as  potential  candidates  to  replace  silicon  as mainstream electronic materials.

Since the successful isolation and first electrical characterization of graphene in 2004, 2D materialshave received tremendous attention from not only physicists and chemists, but also from electronicdevice and biomedical engineers, due to their unique physical properties. The significance of thebreakthrough by the pioneers of 2D materials research, Geim and Novoselov, is evidenced by the award of Nobel Prize in physics in an unusually short period of just 6 years (2010).

This program will focus on the basis of electrical and optical properties of 2D materials including advantage of those properties. It is illustrated with a wide range of devices, placing a strong emphasison  new  and  emerging  technologies.  Applications  covered  include  diodes, transistors, memristor memories, photodetectors, solar cells (photovoltaics), displays, light emitting diodes, photonic devices, and flexible electronics. At the end of the program, students are encouraged to choose one application and write a 2-3 page review report.

Synthesis of Two Dimensional Materials for Electronic, Optoelectronic, and Sensor Applications Massachusetts Institute of Technology

Keywords: Chemical vapor deposition,device physics, nanoelectronics, graphene

Recommendation: This program is designed for students interested in physics, material science and electrical engineering.

Abstract:

The  ever-growing  demand  for  ultralow  power  consumption  and higher performance electronic and architectures.  Two-dimensional  (2D)  materials  including  metallic  graphene,insulating hexagonal boron nitride (h-BN), and semiconducting transition  metal dichalcogenides (TMDs) are revolutionizing our semiconductor industry toward scaling of devices down to the atomic level.

Several unique

properties endowed by their 2D nature such as free of dangling bond for high-level integration,ultimate scaling limit in vertical dimension for almost perfect gate electrostatic control, and strong excitonic effect and spin-valley coupling promise many revolutionary technologies. However, none ofthem  would  become  true  if  no  large-scale  synthesis  method  has  been developed. Chemical vapor deposition  (CVD)  technique  has  shown  great  promise  to  synthesize  these high-quality 2D crystals with scalable-production capability.

In this program, students will learn about the current state-of-the-art regarding CVD growth of 2D materials and their prospects for next-generation electronic, optoelectronic, quality 2D materials will be discussed, followed by lab demo. Students are expected to collect data and compare the electrical,optical,  morphological  properties  of  2D  atomic  layers  grown  by  various methods after the lab demo sessions. Major challenges and future opportunities in this rapidly advancing research field will also be discussed at the end of the course.

关闭

美国留学

400-888-4251