战绩丨南加大 商业分析 offer from 波士顿大学 M同学(女神校)

明德立人教育
OFFER
明德立人录取捷报

学生姓名

M同学

录取院校

USC Marshall School of Business

南加州大学

录取专业

Master of Science in Business Analytics

商业分析硕士

录取院校

Wake Forest University

维克森林大学

录取专业

Master of Science in Business Analytics

商业分析硕士

学生背景

本科院校:Boston University

专业:Business Administration and Management

GPA:3.87/4.00

TOEFL:113/120

GRE:V155-Q166-AW3.5

服务团队

海外文书老师-Cecilia师姐(Harvard)+Peng师姐(Uchicago)

申请老师-Hailey(Stony Brook)

学员介绍


OFFER
南加州大学

OFFER
维克森林大学


以下回答整理自Chase Dream论坛

回答者为南加州大学的Business Analytics专业的毕业生

Q1. BA到底学什么?

顾名思义,BA就是对商业数据进行分析,来支持商业决策。BA是一个交叉学科,包括商业 + 编程 + 统计。商业知识是背景,重要的当然是对于商业数据的理解比如你如果不知道CTR(click-through-rate)是什么,那么你也没有办法对他进行分析,不知道他上升多少下降多少代表了什么,也就不能探索指标变化背后的商业意义。编程是工具,无论是SQL, R, Python,甚至于Excel,他们都只是你分析数据的工具。统计是方法包括了correlation analysis, A/B testing(也就是hypothesis testing),statistical modeling(也就是machine learning)等等。也就是说,我们需要做的是在商业环境下,用一些特定的工具,进行统计学意义上的分析,最终转换回商业价值。


这里肯定会有很多人质疑:BA的商科学的不如MBA,编程不如计算机,统计不如统计/Data Science,那么是不是很鸡肋?不是。一个常见的错觉叫做“越tech越好”/“coding越多越好”。BA之所以能够存在,并且如此迅猛的发展,就是因为对于data analyst,公司所看重的正是你什么都懂一点,能够在Business和tech之间架起一座桥梁。目前的data analyst面试也都少不了问一些business case。嫌弃BA学的不够tech的同学们,毕竟现在美国的大部分BA项目是以帮助你找到工作为目的的“职业培训”,自然只教授成为一个Data Analyst/Data Scientist所需要的核心的那些技能。如果你依然觉得码代码才是王道,那不如早日转CS(是的CS工作还多,工资还更高呢)。

Q2. BA到底用什么语言/工具?

BA用的语言/工具可以分成三方面:

1. 数据库工具

包括SQL和一些NoSQL的工具,主要是提取数据用的。通常是分析的第一步——理解了问题就要去找对应的数据了。


2. 数据分析的工具

最基础的是Excel。然而Excel并未绝迹,或者说,Excel永远都是analyst的基本功。比如你用SQL直接得到了一个summary table,那么接下来能用一个Excel pivot table搞定的事情,又何必大费周章去弄R和Python呢?

高级一点的就是R和Python了(少数行业,比如金融业和医疗行业,会使用SAS)。一方面相对于Excel,他们可以处理的数据量更大,另一方面他们可以做一些更加灵活的处理,并且进行modeling等工作。R和Python之间的话,基本上可以说是平分秋色,在数据分析上没有明显优劣。当然在数据量特别大的情况下你还可能会需要使用Spark等工具。


3. 数据可视化的工具

同样的,最基本的工具是Excel。但是当我们需要能够自动更新的、方便共享的、更加flexible且fancy的dashboard的时候,现在使用最多的当属Tableau。同类的还有PowerBI,R Shiny, d3.js等等。


但是需要强调的是,这些工具都只是工具而已,BA更重要的是,你面对一个Business question的时候,你理解你需要解决的这个问题,心中有相应的目的,再去找达成目的需要的工具。


那么在一个BA的项目是否可以学到以上的全部呢?一般而言可以覆盖到大部分的重点(可能会着重于其中R和Python某一个)。但是必须要强调的是,由于这个行业的特殊性,一个BA的从业者要求的是持续性的自我学习仅从R来讲,各种package层出不穷,提供了便利也要求不断的增加知识储备。因此,仅仅是完成课程内容的话,通常都是不够的。

Q3. BA在美国好就业吗?

BA目前的就业当然还是好于商科的大部分其他专业(会计,金融……),并且越来越多的美国公司开始建设自己的data analytics团队。可以说在一个公司完成了传统的optmization的部署之后,data analytics是他们进一步降低成本、提升价值的必要手段。


但是也不得不给大家浇一盆凉水——目前国际生在美国找工作的情况不容乐观,而且看目前的状况只怕会越来越不乐观一个国际生为了留美,在毕业季投上100+的简历几乎是无法避免的,而这100+的简历,最后能够换来的面试可能只有10个不到(然后最后你很有可能就会输给一个美国人,仅仅因为他是美国人)。在目前政策极端不确定的情况下,愿意支付高昂的成本并且承担风险为你抽H1B的公司是越来越少了。


申请者最常见的说法是,“希望毕业后能在美国工作2-3年”,然而这并不是像看上去那么容易实现的事情。你有STEM不等于你就可以留下来工作三年。如果在OPT前60天+后90天的时间内你都没有找到工作,那么遗憾,你不得不离开了(挂靠等其他手段暂且不提)和很多其他BA项目在读的同学们聊过后发现,几乎每个学校都有找工作不上心以至于最后没找到不得不离开,或者即使很上心的找,投了几百份简历,最后也很遗憾的没找到的情况(有时候运气也很重要)。基本上除非你天赋异禀或者运气超群,只有下定决心留美(而不是“啊我回国也可以”这种心态),扎扎实实的做好找工作的每一步,才能最后留下来(即便如此,还要通过H1B这个真正考验运气的环节)。特别是对于十个月或者一年的BA项目的同学,必须是一入学就开始完善简历、进行networking、广泛网申、准备面试。因此,留美工作的难度比申请要难上很多很多倍。而且找工作是非常personal的一件事情,申请上了一个好的项目绝对不是你能够留下来的保证。请大家做好心理准备。

Q4. BA的就业方向主要是什么?

(我想进金融业/咨询,我适合读BA吗?)

根据个人观察,BA的毕业生只有极少数去了金融行业或者咨询公司。


有进金融行业做量化分析的吗?有。但是很少。和金融工程专业的同学聊过发现,BA和金工确实有很多重合的课程以及skillset(比如Python,比如machine learning,比如excel solver...),然而不重合的那些很可能恰恰的对于金融行业至关重要的那些。因此如果你目标明确做量化的,并不建议读BA。


有进咨询公司的吗?有。但是同样不多。顶尖的咨询公司(主要指战略咨询)招人主要还是面向顶级商学院的MBA。如果想进咨询,那么你需要一开始就走上一条和别人完全不同的道路——比如和MBA networking, 疯狂准备case interview。


那么到底BA毕业生都去干嘛了?答案是去各行各业做data analyst / data scientist之类的工作了。基本上BA可以适用于各类行业(科技, 制造业,娱乐业,...),关键是公司有没有这方面的数据分析需求。


说到这里又不得不探讨一下data analyst和data scientist的区别这个问题了。首先需要声明的是,其实不同公司对于Data Analyst和Data Scientist有着全然不同的定义。有些公司DS做的事情就是别的公司DA做的,只是单纯的称谓不同。因此看职位描述是最好的方法。那么从一个大家比较认可的角度来讲,DA主要是侧重于数据的整理性分析,a/b testing,data viz。而DS主要侧重于modeling。而那些专注modeling的DS职位,目前的行业趋势是很多都需要PhD或者会有很多PhD来和你竞争,因此研究生要在大公司做DS可以说是越来越难了。相比之下,找data analytics title的工作会容易不少(当然工资上确实也会低)。非常不建议纯商科背景,或者入学前几乎不会coding/没有接触过machine learning的同学去找DS的工作。一方面你需要很努力的在这一到两年的时间内学习课内外的DS相关的知识来达到DS职位的要求,另一方面,即使你能够胜任DS的工作了,也很可能因为过去的相关背景太少,而过不了简历关。


而DA的话具体又可以根据工作的部门/职能分类,比如product analyst, customer analyst, marketing analyst, ...。但是万变不离其宗,分析方法基本都是一致的,只是对于domain knowledge的要求有所不同。比如有marketing经验的同学就比较容易找到marketing analyst的工作,因为公司会看重你在这方面的商业经验。

Q5. BA在美国就业的话,主要是在哪些城市?

其实目前BA在各个城市都有需求。之前也说了,BA不是特别局限于行业的一类职位。因此可以说需求和城市的发展程度成正比。比如SF有很多科技公司,那么这些科技公司就有很多data analyst的职位需求,而LA主要是娱乐业,但是这些娱乐业的公司也会有很多相关岗位(特别是marketing analyst)。因此可以说,BA需求较大的地区/城市包括:旧金山地区,洛杉矶地区,西雅图,纽约,德州的奥斯汀+达拉斯,芝加哥,波士顿等等。


那么相应的,对于申请而言,如果你本身项目就在一个大城市,那么当然找工作会方便很多,而且很多公司也会倾向招本地学校的学生。但是就BA来讲,有非常多的再分配的先例,因此也不必太过担心学校太村这个问题(当然学校的career service要足够给力,并且你能够忍受飞来飞去进行Onsite interview)。

Q6. BA在美国找工作的方式主要是?

主要是。。。网申!

基本上找工作的渠道有三类:

1. 来自学校的渠道,比如就我们项目而言,会有career advisor提供一些合作公司的岗位或者校友介绍的岗位,以及学校/学院各类的career fair。


2. 自己找人networking(主要是校友和朋友),然后找他们refer或者直接面试。这个很有效,但是对于中国学生而言,可能需要多多练习networking才能习惯这种方式。


3. 通过LinkedIn, Indeed, Glassdoor等网站网申,这个依然是大家用的最多的方式。前文也说了,大家一般会网投100+的申请。因此可以说,一份完美的简历+cover letter作为你网投的第一步,是非常重要的。

Q7. BA的职位的面试流程是怎么样的?

基本首先是HR的Phone screening,然后和hiring manager, team member之类的video interview,最后final round很可能会要求Onsite(大部分情况下公司会包机票)。全程至少会有2-3轮,最多可能有四五轮。BA岗位很可能在最开始还有data challenge一类的技术测试。不同公司的面试内容会有较大不同,但是大多数都免不了SQL相关问题、work through project experience, 和behavioral questions。因此不需要和SDE一样去刷算法题(最多刷一刷SQL)。

Q8. BA的日常工作做什么?

如果是data analyst的话,日常工作主要包括:


1. Ad-hoc analysis project

也就是别的部门提出了一个问题(例如市场经理,产品经理会有一些他们不能解答的,但是可以通过数据分析来解答的问题),然后我们来决定解决问题需要哪些数据,得到数据,然后进行分析/建模,最后给出相应的分析结果。


再举几个例子,例如通过A/B testing来分析两种页面哪一种更加吸引用户,能够收集更多的点击;例如分析某一次marketing campaign前后各项指标的变化来判断这次campaign的效果。


2. Dashboard building

在我们做分析的过程中,如果发现某一类的分析是价值高且需要定期反复观测结果的,就会把它做成一个dashboard,让相关的部门人员可以定期的打开dashboard直接看到最新的结果,不需要我们反复的run analysis。


3. 其他

由于公司以及具体职能的不同,可能还会有daily reporting,data management(ETL), modeling之类的工作。

Q9. BA的起薪有多少?

起薪这个问题其实在很大程度上取决于行业和地区。大家都应当知道,在美国,不同地区的消费水准和税率是差别很大的。比如NYC和SF可以说是在生活成本上遥遥领先。而华盛顿州和德州这种没有州税的地方可以说是不能更棒了。因此要说工资水平实在是很难一概而论。可能加州的90k和德州的70k最后过的是差不多的。硬要说的话。基本上在湾区的话,DA的起薪最高我知道有110k左右的,当然最低也可能就50k左右(不同公司的差距巨大)。

结论是——起薪整体水平较高,但是距离程序员还有不小差距。

Q10. BA/ MIS/ MFE我应该选什么?

(同类问题还有BA v.s. MSF, BA v.s. MSA等等)

面对不同专业的选择当然是取决于你的职业规划如上所述,如果你一心要做量化分析的,你就去读MFE,如果你觉得data engineer挺合适,或者也想努力一把干脆去做software engineer,那可能MIS更好。MSF和MSA更是同理。毕竟研究生阶段之后,想要再做career trainsit就需要付出更多的努力和更大的成本了。


如果你只是一心想要留美,并不在意什么career plan的话,那么BA, MIS, MFE >> MSF, MSA。(当然如果是名校的MSF和MSA项目也是很好的。)

Q11. 我本科是金融/会计/市场营销/...,

我可以学BA吗?

可以。现在商科本依然是申请BA的主力,也是BA在读的主力但是能不能学好BA就是一个非常因人而异的事情了。我非常建议每一位商科本的同学,不要因为就业好或者看上去比较有趣这样的理由选择BA。最好大家能够尽量去获得一些相关的工作/项目经验,或者是自己尝试学习一下R和Python,保证自己对于coding以及BA的思维是comfortable的。否则,如果你发现BA和自己想的完全不一样的话,或者发现自己对于编程实在是觉得很痛苦的话,可能就来不及了。


那么商科本对于硕士毕业后在美国找一份BA的工作有什么影响呢?不幸的消息是,商科本很可能会对你找特别tech的工作造成较大障碍。比如如果你是想要做DS的,那么公司会理所当然的更信任一个本科就是理工科的申请人,更不要说现在还有那么多理工科的PhD和你竞争(即便你其实可以胜任这份工作,也很可能过不了简历关)。但是如果你的目标是data analyst,甚至是更加偏向business方面的职能,那么这个本科背景可以说并不存在什么劣势,反而也是你懂得基本的商业原理的一种证明。


↓↓↓ 长按下方二维码进行扫描

预约一对一咨询 


推荐阅读

精选留言